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Abstract: - Objective-function-formulation plays very important role in successfully solving any optimization 
problem in general and model updating problem in particular. This paper presents detailed investigations on 
three different types of objective-function-formulations for Derringer’s function based finite element model 
updating method. Three case studies are considered wherein during first case study the objective-function-
formulations are based upon natural frequencies only; while for second case study, only the modal assurance 
criterion values are used for formulating the objectives. In third case study, a combination of natural 
frequencies and modal assurance criterion values are used for formulation of objective-functions. The three 
objective-function-formulations are then compared against each other in terms of error reduction in prediction 
of response variables as well as physical input parameters. It is established that error reduction is maximum 
when both natural frequencies and modal assurance criterion values are collectively used for formulation of 
objective-functions of model updating problem. This benchmark objective-function-formulation is then used 
further in refined model updating stage so as to increase the chances of obtaining more accurate and reliable 
updating results significantly. 
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Abbreviations  
ANOVA analysis of variance 
FE finite element 
FEMU finite element model updating 
MAC modal assurance criterion 
PRESS predicted residual error sum of squares 
RS response surface 
RSM response surface method 
SE simulated experimental 
  
 
Nomenclature 
퐴 coded parameter related to elastic 

modulus of first finite element 
퐵 coded parameter related to elastic 

modulus of fifth finite element 
퐶 coded parameter related to elastic 

modulus of ninth finite element 
퐶  coefficient of 푖th linear term of 

polynomial model 
퐷 coded parameter related to elastic 

modulus of 13th finite element 

퐷  coefficient of 푖th quadratic term of 
polynomial model 

퐷  overall desirability function 
퐸 coded parameter related to elastic 

modulus of 17th finite element 
퐸  elastic modulus of 푖th finite element 
퐹 coded parameter related to elastic 

modulus of 24th finite element 
F’ test statistic of F-test 
푀퐴퐶  modal assurance criterion value for 푖th 

finite element mode with 푖th simulated 
experimental mode 

푀퐴퐶  response surface predicted modal 
assurance criterion value for 푖th finite 
element mode with 푖th simulated 
experimental mode 

푀퐴퐶  lower limit for response surface 
predicted modal assurance criterion 
value for 푖th finite element mode with 푖th 

simulated experimental mode 
푀퐴퐶  upper limit for response surface 

predicted modal assurance criterion 
value for 푖th finite element mode with 푖th 
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simulated experimental mode 
R2 coefficient of determination 
퐕 variance-covariance matrix 
퐗 design matrix as being a set of value 

combinations of coded parameters 
푋  푖th independent parameter  
푌 response predicted by response surface 

method 
푑  푖th individual desirability function 
푓 response function 
푖 integer 
푗 integer 
푚 number of independent parameters 
푛 number of individual desirability 

functions / natural frequencies / modes 
휀 experimental error 
휎 standard deviation 
ω  finite element predicted 푖th natural 

frequency 
휔  response surface predicted natural 

frequency of 푖th mode 
휔  lower limit for response surface 

predicted natural frequency of 푖th mode 
휔  target value for response surface 

predicted natural frequency of 푖th mode 
휔  upper limit for response surface 

predicted natural frequency of 푖th mode 
 
 
1 Introduction 
Use of thin parts made up of low density materials 
in latest machines and structures is increasing day 
by day. Thin and light weight products have lot 
more tendencies to vibrate than their thick and 
heavy weight counterparts. Excessive vibrations 
may even cause pre-mature failure of products. 
Therefore prediction of accurate 
dynamic behavior is a major step in design of rotors 
of turbines and many other machines [1]. Dynamic 
behavior of a structure can be represented by natural 
frequencies, mode-shapes, damping ratios, 
frequency response functions etc. Further, to 
analyze the dynamic behavior of structures, either 
experimental route or theoretical approach [2–3] can 
be followed. Theoretical route involves the 
formation of an analytical model of the system 
either using a classical method [4] or through Finite 
Element (FE) method [5]. Application of classical 
method is generally limited to simple systems only, 
while FE method is preferred for real life complex 
systems. However, FE method is not able to predict 
dynamic responses of structures with complete 
accuracy due to presence of certain errors in FE 

model. Thus there is a need to correct an FE model 
so that its vibration behavior matches with the actual 
dynamic response obtained experimentally. The 
procedure used to update the model is called Finite 
Element Model Updating (FEMU) [6–8]. 
 FEMU methods can be broadly classified into 
direct and iterative methods. Direct (non-iterative) 
methods are essentially the one step methods such 
as those proposed by Baruch and Bar-Itzhack [9], 
Baruch [10], Berman [11], Berman and Nagy [12]. 
Updated FE models produced by such methods may 
not be symmetric and positive definite, hence such 
methods are not much useful in industry. Industrial 
applications generally rely upon the use of iterative 
methods such as those proposed by Collins et al. 
[13], Lin and Ewins [14], Atalla and Inman [15], Li 
[16], Lin and Zhu [17], Arora et al. [18–19] and 
Silva [20].  

Recently, Sehgal and Kumar [21] developed a 
novel technique of FEMU by using Derringer’s 
function method. In this technique, FEMU is treated 
as multi-objective optimization problem; where 
number of objectives need to be defined in such a 
way as to reduce errors in responses predicted by FE 
model. Major issue behind success or failure of such 
FEMU technique is proper formulation of objective 
functions. However, no published work is available 
to compare the performance of different objective-
function-formulations of Derringer’s function based 
FEMU technique. Therefore, purpose of this 
research work is to compare the performance of 
three different types of objective-function-
formulations of Derringer’s function based FEMU 
technique and hence to find out a benchmark 
objective-function-formulation for FEMU.  

Three case studies are performed involving three 
different types of objective-function-formulations. 
During first case study, objective-function-
formulations are based upon natural frequencies 
only. During second case study, objective-functions 
are formulated by using Modal Assurance Criterion 
(MAC) values only. While in third case study, a 
combination of natural frequencies and MAC values 
are used for objective-function-formulations. 
Results of the three case studies are then compared 
against each other to find out the objective-function-
formulations with best performance in terms of error 
reduction in prediction of natural frequencies, MAC 
values as well as physical input parameters. The best 
objective-function-formulations are then used 
further for refined Response Surface (RS) models 
based FEMU.  
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Basic theory of Derringer’s function based 
FEMU technique used in this research paper is 
discussed in section 2. In order to apply Derringer’s 
function based FEMU technique, FE and Simulated 
Experimental (SE) results are required as explained 
in section 3. Section 4 discusses about development 
of RS models. Section 5 presents the current 
research work related to evaluation of a benchmark 
objective-function-formulation and its application to 
refined RS models based FEMU. Section 6 
discusses the conclusions drawn out of the present 
research work. 
 
 
2 Theory 
In this paper Derringer’ function based FEMU 
technique [21] has been used for comparing the 
performance of three different types of objective-
function-formulations. The FEMU technique used in 
this paper is based upon the use of D-optimal 
design, Response Surface Method (RSM) and 
desirability function; basic theory of which is 
presented in subsections 2.1, 2.2 and 2.3 
respectively. 
 
 
2.1 D-optimal design 
There are several design optimality criterion 
available in literature such as D-optimality, A-
optimality, G-optimality. Among all, D-optimality is 
the most popular one [22]. It is a type of computer-
generated designs, which are an outgrowth of the 
original work by Kiefer [23–24] and Kiefer and 
Wolfowitz [25]. In general, modeling accuracy, 
namely, goodness-of-fit, can be measured by a 
variance-covariance matrix 퐕 given by (1). 
 
 퐕 = 휎 퐗′퐗 																																																	(1) 
 

where 휎 is the standard deviation and 퐗 is the 
design matrix being a set of value combinations of 
coded parameters. Naturally, it is expected to 
minimize (퐗′퐗)  in order to obtain an accurate RS 
model. In statistics, minimizing (퐗′퐗)  is 
equivalent to maximizing the determinant of 퐗′퐗. 
Therefore, the criteria for constructing the design 
matrix with a maximized |퐗′퐗| from a set of 
candidate samples can be defined as the D-
optimality. The initial ‘D’ stands for ‘determinant’. 
By using D-optimal designs, the generalized 
variance of a predefined model is minimized, which 
means the ‘optimality’ of a specific D-optimal 

design is model dependent. Unlike standard designs, 
D-optimal designs are straight optimization and 
their matrices are generally not orthogonal with the 
effect estimates correlated.  
 
 
2.2 Response surface method 
RSM is a collection of mathematical and statistical 
techniques that are useful for modeling and analysis 
of problems in which a response of interest is 
influenced by several input variables and the 
objective is to optimize this response [26–27]. It is a 
sequential experimentation strategy for empirical 
model building and optimization as shown in Fig. 1 
[28].  

 

 
Fig. 1 Procedure of RSM [28]. 

 
By conducting experiments and applying 

regression analysis, a model of the response to some 
independent input variables can be obtained. Based 
on the model of the response, a near optimal point 
can then be deduced. RSM is often applied in the 
characterization and optimization of processes. In 
RSM, it is possible to represent independent process 
parameters in quantitative form as written in (2). 
 
 푌 = 푓(푋 ,푋 ,푋 , …푋 ) ± 휀																										(2) 
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where 푌 is the response, 푓 is the response 
function, 휀 is the experimental error, and 
푋 ,푋 ,푋 , …푋  are independent parameters. By 
plotting the expected response of 푌, a surface, 
known as RS is obtained. The form of 푓 is unknown 
and may be very complicated. Thus, RSM aims at 
approximating 푓 by a suitable lower ordered 
polynomial in some region of the independent 
process variables. If the response can be well 
modeled by a linear function of the 푚  independent 
variables, the function 푌 can be written as: 
 
 푌 = 퐶 + 퐶 푋 + 퐶 푋 +⋯+ 퐶 푋 ± 휀	(3) 
 

However, if a curvature appears in the system, 
then a higher order polynomial such as the quadratic 
model as shown in (4) may be used. 

 
 푌 = 퐶 + ∑ 퐶 푋 + ∑ 퐷 푋 ± 휀										(4) 
 

Objective of using RSM is not only to investigate 
the response over entire factor space, but also to 
locate the region of interest where the response 
reaches its optimum or near optimal value. By 
studying carefully the RS model, the combination of 
factors, which gives the best response, can then be 
established. 
 
 
2.3 Desirability function 
Derringer and Suich [29] describe a multiple 
response method called desirability. The method 
makes use of an objective function, 퐷 , called 
overall desirability function and transforms an 
estimated response into a scale free value (푑 ) called 
individual desirability. The desirable ranges are 
from zero to one (least to most desirable, 
respectively). The factor settings with maximum 
overall desirability are considered to be the optimal 
parameter conditions. The simultaneous objective 
function is a geometric mean of all transformed 
responses: 
 
 퐷 = (푑 × 푑 × 푑 × … × 푑 ) 																(5) 
 

where 푛 is the number of responses in the 
measure. If any of the responses falls outside the 
desirability range, the overall function becomes 
zero. Desirability is an objective function that 
ranges from zero outside of the limits to one at the 
goal. The numerical optimization finds a point that 
maximizes the desirability function. For several 
responses, all goals get combined into one 

desirability function. For simultaneous optimization, 
each response must have a lower and upper limit 
assigned to each goal. The “Goal” field for 
responses must be one of five choices: “none”, 
“maximum”, “minimum”, “target”, or “in range”. 
Factors will always be included in the optimization 
at their design range by default, or as a maximum, 
minimum of target goal. The meanings of the goal 
parameters are: 
 
 Maximum: 
o 푑 = 0   if response < lower limit 
o 0 ≤ 푑 ≤ 1  as response varies from lower to 
upper limit 
o 푑 = 1 if response > upper limit 
 
 Minimum: 
o 푑 = 1 if response < lower limit 
o 1 ≤ 푑 ≤ 0 as response varies from lower to 
upper limit 
o 푑 = 0 if response > upper limit 
 
 Target: 
o 푑 = 0 if response < lower limit 
o 0 ≤ 푑 ≤ 1 as response varies from lower limit 
to target 
o 1 ≥ 푑 ≥ 0 as response varies from target to 
upper limit 
o 푑 = 0 if response > upper limit 
 
 Range: 
o 푑 = 0 if response < lower limit 
o 푑 = 1 as response varies from lower to upper 
limit 
o 푑 = 0 if response > upper limit 
 

The 푑  for “in range” are included in the product 
of the desirability function “퐷 ”, but are not counted 
in determining “푛”: 퐷 = (∏푑 ) . If the goal is 
none, the response will not be used for the 
optimization. 
  
 
3 Generation of initial FE and SE 
results 
A cantilever beam structure as drawn in Fig. 2 is 
considered in present study. This beam structure is 
taken because of its resemblance with many real life 
products such as blade of rotor of a turbine, wing of 
an airplane, wing of a ceiling fan, an integrated chip 
of a mechatronic product etc. Cantilever beam is 
having the dimensions 910 x 49 x 7 mm3, density 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Shankar Sehgal, Harmesh Kumar

E-ISSN: 2224-3429 63 Volume 9, 2014



 
 

6728 kg/m3 and Young’ modulus of elasticity as 200 
GPa. Initial FE model of undamaged beam is 
constructed using 30 beam elements each having 
two nodes. The FE model developed in Matlab [30] 
is then used for producing initial FE natural 
frequencies and mode-shapes for first five modes of 
undamaged beam. After that, perturbation is 
introduced into the FE model of beam structure by 
reducing the value of modulus of elasticity of six 
finite elements as per the data provided in Table 1. 
Six damage locations have been selected in such a 
way so as to distribute these over entire length of 
beam. FE model of damaged beam is then processed 
in Matlab to produce SE natural frequencies and 
mode-shapes, which are later treated as target 
results. SE results have been used earlier also by 
many researchers as target results for model 
updating related research work [32–35]. In this 
paper, responses such as natural frequencies of first 
five modes (휔  to 휔 ) and first five diagonal 
elements of MAC matrix (푀퐴퐶  to 푀퐴퐶 ) are 
used during formulation of objective functions of 
FEMU problem. 

Table 2 presents a comparison of SE responses 
versus FE responses (before FEMU) of beam. It is 
clear from Table 2 that FE responses do not match 
with their SE counterparts. So, input parameters of 
FE model are updated through Derringer’s function 
based FEMU. For this purpose, first the RS models 
of natural frequencies and MAC values need to be 
developed as described in section 4. 
 
 

 
Fig. 2 FE model of a damaged cantilever beam 

structure. 
 
 
Table 1: Physical parameters of undamaged and 

damaged beams. 

Physical parameter 퐸  퐸  퐸  퐸  퐸  퐸  

Stiffness in FE  
model of undamaged  
beam (GPa) 

200 200 200 200 200 200 

Stiffness in FE  
model of damaged  
beam (GPa) 

60 80 100 60 80 100 

 
 

Table 2: Comparison of SE and FE responses 
(before FEMU). 

Response variable 
Response value 

SE FE (before FEMU) 

휔  (Hz) 5.98 7.45 

휔  (Hz) 37.91 46.66 

휔  (Hz) 111.82 130.64 

휔  (Hz) 213.02 256.01 

휔  (Hz) 353.51 423.21 

푀퐴퐶  1.0000 0.9996 

푀퐴퐶  1.0000 0.9949 

푀퐴퐶  1.0000 0.9873 

푀퐴퐶  1.0000 0.9769 

푀퐴퐶  1.0000 0.9544 

 
 
4 Development of RS models of 
natural frequencies and MAC values 
RS models are a basic requirement for Derringer’s 
function based FEMU. In order to develop RS 
models, firstly an experimental design matrix is 
generated by using D-optimal design in Design-
Expert software [35]. Range of each input physical 
parameter (퐸 , 퐸 , 퐸 , 퐸 , 퐸  and 퐸 ) is decided. 
Lower and upper limits for all the input parameters 
are taken as 20% and 60% of their corresponding 
initial FE values respectively. Thus lower limit for 
each input parameter is taken as 40 GPa and the 
upper limit of the input parameter is taken as 120 
GPa. Six coded parameters (퐴, 퐵, 퐶, 퐷, 퐸, and 퐹)  
are defined in such a way that each coded parameter 
varies linearly between -1 and +1 over complete 
range of its corresponding physical parameters (퐸 , 
퐸 , 퐸 , 퐸 , 퐸  and 퐸 ). Coordinate exchange 
method [36] is used for candidate selection, because 
it does not require a candidate list, which if 
unchecked grows exponentially as the size of the 
problem increases [37]. D-optimality criterion is 
used to develop the design matrix of actual physical 
variables. Design matrix is consisting of a total of 
33 test runs and contains the information about 
various combinations of different levels of input 
physical parameters at which different SE runs need 
to be performed. Design matrix is then imported in 
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Matlab and used as input to FE model. FE model is 
then used to produce response variables matrices as 
its output. The matrices of response variables are 
then supplemented to the experimental design 
matrix available in Design-Expert. Relationship 
between the set of input parameters (퐸 , 퐸 , 퐸 , 퐸 , 
퐸  and 퐸 ) and corresponding set of response 
variables (휔 , 휔 , 휔 , 휔 , 휔 , 푀퐴퐶 , 푀퐴퐶 , 
푀퐴퐶 , 푀퐴퐶  and 푀퐴퐶 ) is assumed to be 
quadratic. A quadratic fit is assumed because it is 
giving better results than a linear or a cubic model. 
In order to check adequacy of the RS model, 
ANalysis Of VAriance (ANOVA) is performed 
[38]. F-test method is used to carry out the 
hypothesis testing to check significance of different 
parameters. Results of ANOVA using F-test for RS 
predicted first natural frequency (휔 ) are presented 
in Table 3. ANOVA results suggest that the RS 
model for first natural frequency is statistically 
significant (p-value < 0.0001). Value of R2 and 
adjusted R2 is over 99%, which means that RS 
model provides an excellent explanation of 
relationship between independent variables (퐴, 퐵, 퐶, 
퐷, 퐸, and 퐹) and response variable (휔 ). Further, 
factor A (Elastic modulus of first element), B 
(Elastic modulus of fifth element), C (Elastic 
modulus of ninth element), D (Elastic modulus of 
13th element), E (Elastic modulus of 17th element), 
AB (interaction effect of elastic modulus of first 
element with elastic modulus of fifth element), AC 
(interaction effect of elastic modulus of first element 
with elastic modulus of ninth element), AD 
(interaction effect of elastic modulus of first element 
with elastic modulus of 13th element), BC 
(interaction effect of elastic modulus of fifth 
element with elastic modulus of ninth element), A2 
(square of elastic modulus of first element), B2 
(square of elastic modulus of fifth element), C2 
(square of elastic modulus of ninth element), D2 
(square of elastic modulus of 13th element), E2 
(square of elastic modulus of 17th element) have 
significant effect. These significant effects, in 
descending order are A, B, C, D, A2, B2, AB, AC, E, 
BC, D2, C2, AD and E2. The other model terms are 
said to be non-significant. 

To fit the quadratic model for 휔  appropriate, the 
non-significant terms are eliminated by backward 
elimination process. Non-significant terms such as 
DE, F, DF, EF, BE, AF, CE, CD, AE, BD, CF and 
BF are eliminated during the backward elimination 
process. Thus the reduced regression model contains 
very less number of terms compared to the initial 
regression model of 휔 , thereby making the model 

computationally more efficient without 
compromising much on accuracy and reliability 
part. Table 4 shows the ANOVA table for reduced 
quadratic model for 휔 . 
 

Table 3: ANOVA for 흎ퟏ (before backward 
elimination). 

Source Sum of  
squares 

Degrees of 
freedom 

Mean  
square F-Value 

p-value 

Prob > F’ 

Model 7.26 27 0.27 775.14 < 0.0001 

A 2.87 1 2.87 8271.61 < 0.0001 

B 1.27 1 1.27 3652.81 < 0.0001 

C 0.46 1 0.46 1334.51 < 0.0001 

D 0.12 1 0.12 342.56 < 0.0001 

E 0.02 1 0.02 46.61 0.0010 

F 0.00 1 0.00 0.08 0.7867 

AB 0.04 1 0.04 102.45 0.0002 

AC 0.02 1 0.02 57.96 0.0006 

AD 0.01 1 0.01 14.59 0.0124 

AE 0.00 1 0.00 1.92 0.2240 

AF 0.00 1 0.00 0.76 0.4233 

BC 0.01 1 0.01 22.85 0.0050 

BD 0.00 1 0.00 2.11 0.2057 

BE 0.00 1 0.00 0.46 0.5268 

BF 0.00 1 0.00 2.94 0.1471 

CD 0.00 1 0.00 1.44 0.2838 

CE 0.00 1 0.00 1.22 0.3190 

CF 0.00 1 0.00 2.92 0.1481 

DE 0.00 1 0.00 0.00 0.9968 

DF 0.00 1 0.00 0.12 0.7461 

EF 0.00 1 0.00 0.13 0.7347 

A2 0.08 1 0.08 220.46 < 0.0001 

B2 0.05 1 0.05 142.51 < 0.0001 

C2 0.01 1 0.01 15.01 0.0117 

D2 0.01 1 0.01 20.62 0.0062 

E2 0.00 1 0.00 8.72 0.0318 

F2 0.00 1 0.00 3.58 0.1169 

Residual 0.00 5 0.00 
  

Cor Total 7.26 32 
   

Std. Dev. 0.02 
 

R2 0.9998 

Mean 5.85 
 

Adjusted R2 0.9985 

C.V. % 0.32 
 

Predicted R2 0.9811 

PRESS 0.14 
 

Adequate Precision 99.0151 
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Table 4: ANOVA for 흎ퟏ (after backward 
elimination). 

 
The reduced RS model results indicate that the 

model is significant (p-value < 0.0001). The value 
of R2 and adjusted R2 is over 99%, which means that 
the reduced model gives a sufficiently accurate 
relationship between the input variables and the 
response variables. Moreover, the “Predicted R2” 
value is 0.9965, which is in good agreement with the 
“Adjusted R2” value of 0.9983. The Predicted 
Residual Error Sum of Squares (PRESS); which is a 
measure of discrepancy between experimental data 
and estimated model, is 0.03. Such a low value of 
PRESS shows that the quadratic model well fits 
each point in the design.  

 

 
Fig. 3 Predicted versus actual values of 흎ퟏ. 

 
 Fig. 3 shows the values of the first natural 
frequency predicted by the RS model versus the 
values actually observed by FE analysis. Fig. 3 
proves that the regression model is fairly well fitted 
with the observed values. The polynomial equation 
for first natural frequency, in coded terms, is written 
as:- 
 
 휔 = 6.18 + 0.37퐴 + 0.25퐵 + 0.15퐶 +
																	0.08퐷 + 0.03퐸 + 0.04퐴퐵 + 0.03퐴퐶 +
																	0.02퐴퐷 + 0.02퐵퐶 − 	0.17퐴 −
																	0.13퐵 − 0.05퐶 − 0.04퐷 −
																	0.03퐸 + 0.02퐹 																																		(6) 
 
 Fig. 4(a) shows the three-dimensional 
distribution of RS of first natural frequency (휔 ) 
with respect to the set of physical parameters 퐸  and 
퐸 , while keeping rest of the physical parameters 
(퐸 ,퐸 ,퐸  and 퐸 ) at a constant level of 80 GPa. 
Three-dimensional distribution of 휔  with respect to 
a set of input parameters (퐸  and 퐸 ), (퐸  and 퐸 ), 
(퐸  and 퐸 ), (퐸  and 퐸 ) and (퐸  and 퐸 ) have 
been drawn respectively in part (b), (c), (d), (e) and 
(f) of Fig. 4. In each figure, two input parameters are 
varied between their lower and upper limits, while 
remaining input parameters are held at a constant 
level of 80 GPa.  
 

Source Sum of  
squares 

Degrees of 
freedom 

Mean  
square F-Value 

p-value 

Prob > F’ 

Model 7.25 15 0.48 1273.82 < 0.0001 

A 3.29 1 3.29 8679.56 < 0.0001 

B 1.36 1 1.36 3593.86 < 0.0001 

C 0.53 1 0.53 1406.41 < 0.0001 

D 0.13 1 0.13 332.32 < 0.0001 

E 0.02 1 0.02 51.23 < 0.0001 

AB 0.04 1 0.04 94.91 < 0.0001 

AC 0.02 1 0.02 55.53 < 0.0001 

AD 0.01 1 0.01 13.35 0.0020 

BC 0.01 1 0.01 22.30 0.0002 

A2 0.08 1 0.08 211.52 < 0.0001 

B2 0.05 1 0.05 135.63 < 0.0001 

C2 0.01 1 0.01 17.71 0.0006 

D2 0.01 1 0.01 18.70 0.0005 

E2 0.00 1 0.00 7.64 0.0133 

F2 0.00 1 0.00 3.07 0.0976 

Residual 0.01 17 0.00 
  

Cor Total 7.26 32 
   

Std. Dev. 0.02 
 

R2 0.9991 

Mean 5.85 
 

Adjusted R2 0.9983 

C.V. % 0.33 
 

Predicted R2 0.9965 

PRESS 0.03 
 

Adequate Precision 126.1608 
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(a) 

 

 
(b) 

 

(c) 
 

 
(d) 

 

 
(e) 

 

 
(f) 

 
Fig. 4 Response surface for 흎ퟏ with respect to; 
(a) 푬ퟏ and 푬ퟓ (b) 푬ퟏ and 푬ퟗ (c) 푬ퟏ and 푬ퟏퟑ (d) 
푬ퟏ and 푬ퟏퟕ (e) 푬ퟏ and 푬ퟐퟒ (f) 푬ퟓ and 푬ퟗ. 
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Similar analysis is also performed for next nine 
RS predicted response variables viz. 휔 , 휔 , 휔 , 
휔 , 푀퐴퐶 , 푀퐴퐶 , 푀퐴퐶 , 푀퐴퐶  and 푀퐴퐶 . 
After fitting RS models to actually observed results, 
the RS models for next nine responses (in coded 
terms) are given by the regression equations (7) to 
(15). Corresponding RS plots have been presented 
in Fig. 5 to 13. 

 
 휔 = 39.40 + 1.94퐴 + 0.20퐵 + 0.27퐶 +
																	1.17퐷 + 1.42퐸 + 0.30퐹 + 0.11퐴퐵 −
																	0.09퐴퐶 + 0.14퐴퐸 − 	0.05퐵퐷 +
																	0.09퐶퐷 + 0.09퐶퐸 + 0.19퐷퐸 +
																	0.05퐸퐹 − 0.63퐴 − 0.12퐵 −
																	0.18퐶 − 0.57퐷 − 0.68퐸 															(7) 
 
 
 휔 = 112.08 + 4.15퐴 + 0.43퐵 + 3.24퐶 +
																	0.89퐷 + 1.28퐸 + 3.68퐹 − 0.41퐴퐵 +
																	0.26퐴퐷 − 0.23퐴퐸 + 0.30퐴퐹 +
																	0.36퐶퐷 + 0.29퐶퐹 + 0.41퐸퐹 −
																	1.10퐴 − 1.39퐶 − 0.44퐷 −
																	0.59퐸 − 1.88퐹 																																		(8) 
 
 
 휔 = 214.34 + 6.12퐴 + 3.79퐵 + 2.56퐶 +
																	3.58퐷 + 4.15퐸 + 9.25퐹 − 0.87퐴퐵 +
																	0.59퐴퐶 − 0.55퐴퐷 + 	0.70퐴퐸 +
																	0.73퐵퐶 − 0.28퐵퐷 + 0.46퐵퐸 −
																	0.47퐶퐷 + 0.95퐷퐸 + 0.75퐷퐹 −
																	0.94퐸퐹 − 1.20퐴 − 2.03퐵 −
																	1.08퐶 − 1.58퐷 − 1.48퐸 −								(9) 
 
 
 휔 = 358.61 + 8.18퐴 + 11.60퐵 + 1.95퐶 +
																	9.33퐷 + 8.85퐸 + 7.32퐹 − 0.57퐴퐵 −
																	0.55퐴퐶 + 1.42퐴퐷 − 1.28퐵퐶 +
																	2.10퐵퐷 + 0.68퐶퐷 − 1.83퐷퐸 −
																	0.66퐷퐹 + 0.64퐸퐹 − 1.06퐴 −
																	4.22퐵 − 3.64퐷 − 	3.26퐸 −
																	2.12퐹 																																																			(10) 
 
 
  푀퐴퐶 = 10 × (9998.94 − 2.57퐴 −
																									0.96퐵 + 0.49퐶 + 1.07퐷 +
																									0.50퐸 − 1.33퐴퐵 + 1.70퐴퐶 +
																									2.40퐴퐷 + 1.58퐴퐸 + 0.66퐵퐷 −
																									0.79퐶퐷 − 0.72퐷퐸 − 2.37퐴 −
																									1.87퐷 )																																								(11) 
 
 푀퐴퐶 = 10 × (9991.36 − 14.19퐴 +
																									1.29퐵 − 2.85퐶 − 4.65퐷 +

																									5.51퐸 + 6.69퐹 − 5.83퐴퐶 −
																									1.78퐴퐷 + 16.12퐴퐸 + 7.13퐴퐹 −
																									2.24퐶퐷 + 4.50퐶퐸 + 3.45퐶퐹 +
																									3.20퐷퐹 − 	12.30퐴 + 3.95퐶 −
																									11.13퐸 − 5.60퐹 )																				(12) 
 
 
 푀퐴퐶 = 10 × (9986.63 − 33.57퐴 −
																									11.77퐶 + 38.82퐹 − 15.94퐴퐵 −
																									19.63퐴퐶 + 8.83퐴퐷 + 55.40퐴퐹 +
																									16.58퐵퐹 + 32.80퐶퐹 + 8.34퐷퐸 −
																									10.18퐷퐹 + 26.83퐸퐹 − 34.20퐴 −
																									70.70퐹 )																																							(13) 
 
 
 푀퐴퐶 = 10 × (9925.18 − 69.34퐴 −
																									40.64퐵 − 30.36퐷 + 40.53퐸 +
																									104.23퐹 − 56.69퐴퐵 + 29.06퐴퐸 +
																									88.89퐴퐹 − 21.35퐵퐷 +
																									22.89퐵퐸 + 52.74퐵퐹 + 26.02퐶퐹 +
																									35.00퐷퐸 + 20.52퐷퐹 − 51.93퐸 −
																									122.71퐹 )																																					(14) 
 
 
 푀퐴퐶 = 10 × (9931.21 − 32.15퐴 +
																									45.96퐶 − 62.02퐷 + 69.05퐸 +
																									80.61퐹 − 84.45퐴퐵 − 19.27퐴퐶 +
																									59.11퐴퐸 + 53.46퐴퐹 − 40.75퐵퐶 +
																									30.14퐵퐷 + 44.71퐵퐸 +
																									58.88퐵퐹 + 35.52퐶퐷 +
																									24.57퐷퐹 − 46.67퐸퐹 − 43.15퐴 −
																									57.74퐶 − 58.64퐸 −
																									76.35퐹 )																																							(15) 
 
 

 
Fig. 5 Three-dimensional surface plot for 흎ퟐ. 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Shankar Sehgal, Harmesh Kumar

E-ISSN: 2224-3429 68 Volume 9, 2014



 
 

 
Fig. 6 Three-dimensional surface plot for 흎ퟑ. 

 
 

 
Fig. 7 Three-dimensional surface plot for 흎ퟒ. 

 
 

 
Fig. 8 Three-dimensional surface plot for 흎ퟓ. 

 
 

 
 

 
Fig. 9 Three-dimensional surface plot for 푴푨푪ퟏퟏ. 
 
 
 

 

 
Fig. 10 Three-dimensional surface plot for 

푴푨푪ퟐퟐ. 
 
 

 
Fig. 11 Three-dimensional surface plot for 

푴푨푪ퟑퟑ. 
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Fig. 12 Three-dimensional surface plot for 

푴푨푪ퟒퟒ. 
 

 
Fig. 13 Three-dimensional surface plot for 

푴푨푪ퟓퟓ. 
 

After having generated RS models for all 
response variables, next major step is the objective-
function-formulation for Derringer’s function based 
FEMU problem. For this purpose three different 
case studies have been carried out. Results of the 
three case studies have been compared in order to 
find out the best possible formulation of objective 
functions. 
 
 
5 Evaluation of benchmark objective-
function-formulation and its 
application 
Three types of objective-function-formulations are 
evaluated for their performance and then compared 
with each other in order to establish a benchmark 
objective-function-formulation than can be used in 
further research work related to Derringer’s function 
based FEMU method. For this purpose, three case 
studies are carried out as explained in sub-sections 

5.1, 5.2 and 5.3. Results of the three case studies are 
then compared in subsection 5.4 in order to find out 
benchmark objective-function-formulation. 
 
 
5.1 First case study 
During first case study, sub-objectives of FEMU are 
formulated by using natural frequencies only. Five 
individual desirability functions are defined based 
on the pattern reflected in (16).  
 
푑

=

⎩
⎪
⎨

⎪
⎧

휔 − 휔
휔 − 휔

, 휔 ≤ 휔 	≤ 휔

휔 − 휔
휔 − 휔

, 휔 < 휔 	≤ 휔

0																, 휔 < 휔 	표푟	휔 > 휔

(16) 

 
where 푑  is 푖th individual desirability function; 휔  

is 푖th natural frequency predicted by RS model; 휔  
is the target value for 푖th RS model, which is set as 
corresponding SE natural frequency; 휔  is lower 
limit for 푖th natural frequency predicted by RS 
model, which is set at a value 0.3% lower than 휔 . 
휔  is upper limit for 푖th natural frequency 
predicted by RS model, which is set at a value 0.3% 
higher than 휔 .  

Numerical details of formulation of sub-
objectives of FEMU are presented in Table 5. 
Values given in Table 5 are used in conjunction with 
(16) to formulate the individual desirability 
functions for first five RS predicted natural 
frequencies. Fig. 14 shows the individual 
desirability function for ω .  
 

 
Fig. 14 Individual desirability function for 흎ퟏ. 

 
Individual desirability functions for 휔 , 휔 , 휔  

and 휔  also follow the pattern similar to Fig. 14. 
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Value of any individual desirability function for any 
particular mode will be unity, only if RS predicted 
value of natural frequency of that particular mode 
will be equal to corresponding SE value. Thus 
FEMU problem gets converted to an optimization 
problem, where five sub-objectives of the problem 
are to maximize the scale-free individual desirability 
functions. 
 
Table 5: Numerical details of objective-function-

formulation during first case study. 
RS predicted  

response  
variable 

휔  
(Hz) 

휔  
(Hz) 

휔  
(Hz) 

휔  5.98 5.96 6.00 

휔  37.91 37.80 38.02 

휔  111.82 111.48 112.16 

휔  213.02 212.38 213.66 

휔  353.51 352.45 354.57 

 
Further, the individual desirability functions are 

combined together to form a single overall 
desirability function as per (5), thereby converting 
the FEMU problem into the maximization of just a 
single overall desirability function. Overall 
desirability function will achieve a unit value only if 
all the individual desirability functions are each 
equal to unity. Plot of the overall desirability 
function with respect to 퐸  and 퐸  is drawn in Fig. 
15.  
 

 
Fig. 15 Three dimensional plot of overall 
desirability function for first case study. 

 
It can be seen from Fig. 15 that high value of 

overall desirability function is achieved at only a 
few locations; while in most part of the design space 
overall desirability function approaches zero. As is 
highlighted in contour plots drawn in Fig. 16, if 퐸  

takes a value lower than 57 GPa or higher than 62 
GPa, the overall desirability function falls to zero; 
thereby restricting the design space. Moreover, if 퐸  
parameter falls below 71 GPa or above 83 GPa, 
overall desirability function again falls to zero 
irrespective of the value of 퐸 . This information is 
very important in dynamic design applications.  

 

 
Fig. 16 Contour plot of overall desirability 

function for first case study. 
 

The updating parameters are found in such a way 
that the overall desirability function approached 
unity. It is found that optimum value of overall 
desirability function is 1.0000. This optimum value 
of overall desirability function is achieved when 
updating parameters (퐸 , 퐸 , 퐸 , 퐸 , 퐸  and 퐸 ) 
are set to (59.64, 74.84, 111.21, 81.82, 65.36 and 
94.86) GPa respectively. These settings are then 
used to produce an updated FE model, which is 
further executed in Matlab to produce updated 
natural frequencies and MAC values. Updated FE 
results are then compared with their SE 
counterparts. Updating results show that, before 
FEMU, there is an absolute average error of 20.87% 
in prediction of natural frequencies (considering 
first five modes), which gets reduced to just 0.19% 
after FEMU. Clearly, there is an error reduction of 
99.09% in prediction of natural frequencies. An 
error reduction of 94.94% is observed in prediction 
of MAC values. But error reduction in prediction of 
the actual physical parameters is just 91.92%, which 
is not quite satisfactory and hence motivated the 
authors to do further work in order to find a better 
formulation of objective-functions; thereby leading 
to second and third case studies as explained in next 
two sub-sections.  
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5.2 Second case study 
During second case study, formulation of individual 
desirability functions is done by using MAC values 
only. Here formulation is done in such a manner so 
as to maximize the MAC values as shown in (17).  
 
푑 = 

⎩
⎪
⎨

⎪
⎧ 1														,푀퐴퐶 	≥ 푀퐴퐶

푀퐴퐶 −푀퐴퐶
푀퐴퐶 −푀퐴퐶

,푀퐴퐶 < 푀퐴퐶 < 푀퐴퐶

0																,푀퐴퐶 ≤ 푀퐴퐶 	

 

(17) 
 

where 푑  is 푖th individual desirability function; 
푀퐴퐶  is 푖th MAC value predicted by RS model; 
푀퐴퐶  is upper limit for 푖th MAC value predicted 
by RS model, which is set to be unity, this is 
because realistically, the maximum possible value 
for MAC is unity. 푀퐴퐶  is lower limit for 푖th 
MAC value predicted by RS model, which is set at a 
value 0.997, i.e., 0.3% lower than 푀퐴퐶 . 
Numerical details of formulation of individual 
desirability functions are also presented in Table 6.  

 
Table 6: Numerical details of objective-function-

formulation during second case study. 
RS predicted  

response  
variable 

Type of objective function 푀퐴퐶  푀퐴퐶  

푀퐴퐶  Maximize 0.997 1 

푀퐴퐶  Maximize 0.997 1 

푀퐴퐶  Maximize 0.997 1 

푀퐴퐶  Maximize 0.997 1 

푀퐴퐶  Maximize 0.997 1 

 
Values shown in Table 6 are combined as per 

(17) to develop the individual desirability functions. 
Graphically, individual desirability functions for 
푀퐴퐶  is drawn in Fig. 17. Next four individual 
desirability functions also have a graphical form as 
drawn in Fig. 17.  Overall desirability function is 
developed by combining the five individual 
desirability functions together to produce a single 
overall desirability function as per (5). Three 
dimensional plot of overall desirability function is 
drawn in Fig. 18, while a zoomed view of contour 
plot of overall desirability function is presented in 
Fig. 19. 
 

 
Fig. 17 Individual desirability function for 

푴푨푪ퟏퟏ. 
 

 
Fig. 18 Three dimensional plot of overall 

desirability function for second case study. 
 

 
Fig. 19 Contour plot of overall desirability 
function for second case study. 
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Optimum value of the overall desirability 
function is found to be 0.996068. Corresponding set 
of updating parameters (퐸 , 퐸 , 퐸 , 퐸 , 퐸  and 
퐸 ) are found to be (52.49, 113.08, 104.05, 70.59, 
79.80 and 95.06) GPa. These updated values of 
physical parameters are then used to update the FE 
model of beam structure and later on to produce 
updated natural frequencies and MAC values. 
During this case study, updated results show an 
error reduction of 96.20%, 96.55% and 91.65% in 
prediction of natural frequencies, MAC values and 
physical parameters respectively. Since an error 
reduction of just 91.65% (in case of prediction of 
physical parameters) is not quite satisfactory, so 
next case study needs to be carried out, during 
which objective-functions are formulated by using 
both natural frequencies as well as MAC values. 
 
 
5.3 Third case study 

During third case study, the sub-objectives are 
formulated by using natural frequencies as well as 
MAC values Numerical details of formulation of 
individual desirability functions are shown in Table 
7. Values shown in Table 7 are combined as per (18) 
to develop ten individual desirability functions, 
which are then processed further to form a single 
overall desirability function. Three dimensional and 
contour plots (zoomed) of the overall desirability 
function have been drawn in Figs. 20 and 21 
respectively. 

 
Table 7: Numerical details of objective-function-

formulation during third case study. 
RS 

predicted  
response  
variable 

Type of objective 
function 

Lower 
limit 

Upper 
limit 

휔  Target 5.98 5.96 6.00 

휔  Target 37.91 37.80 38.02 

휔  Target 111.82 111.48 112.16 

휔  Target 213.02 212.38 213.66 

휔  Target 353.51 352.45 354.57 

푀퐴퐶  Maximize 0.997 1.000 

푀퐴퐶  Maximize 0.997 1.000 

푀퐴퐶  Maximize 0.997 1.000 

푀퐴퐶  Maximize 0.997 1.000 

푀퐴퐶  Maximize 0.997 1.000 

 

푑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧ , 휔 ≤ 휔 	≤ 휔

, 휔 < 휔 	≤ 휔

0																, 휔 < 휔 	표푟	휔 > 휔 ⎭
⎪
⎬

⎪
⎫

1 ≤ 푗 ≤ 5

1																, 푀퐴퐶 	≥ 푀퐴퐶

,푀퐴퐶 < 푀퐴퐶 < 푀퐴퐶

0																, 푀퐴퐶 ≤ 푀퐴퐶 	

6 ≤ 푗 ≤ 10

                                             

                                                                             (18) 
 

where 푑  is 푗th individual desirability function; 푖 is 
an integer varying from one to five for first five 
modes; 푗 is an integer varying from one to ten for 
ten individual desirability functions; other 
parameters are as defined in (16) and (17). 
 
 

 
Fig. 20 Three dimensional plot of overall 
desirability function for third case study. 

 

 
Fig. 21 Contour plot of overall desirability 

function for third case study. 
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During third case study, the optimum value of 
the overall desirability function is found to be 
0.782667. Corresponding set of updating parameters 
(퐸 , 퐸 , 퐸 , 퐸 , 퐸  and 퐸 ) is found to be (61.58, 
79.92, 97.71, 57.60, 85.45 and 96.30) GPa 
respectively. The updated values of the physical 
parameters are then used to update the FE model of 
the beam structure and later on to produce updated 
natural frequencies and MAC values. Here, the 
updated results show an error reduction of 99.34%, 
99.65% and 97.98% in the prediction of natural 
frequencies, MAC values and physical parameters 
respectively.  
 
 
5.4 Comparison of results of three case 
studies 
Updated response variables viz., natural frequencies 
and MAC values, of three case studies have been 
summarized in Table 8 and 9 respectively. Fig. 22 
shows a comparison of response variables based 
FEMU results of the three case studies. It is clear 
from Fig. 22 that while considering error reduction 
in natural frequencies; objective-function-
formulations of first case study (where error 
reduction is 99.1%) perform better than that of 
second case study (where error reduction is 96.3%). 
On the other hand, objective-function-formulations 
of second case study perform (where error reduction 
is 96.55%) better than that of first case study (where 
error reduction is 94.94%), if only the error 
reduction in prediction of MAC values is 
considered. But, both the first as well as second case 
study based objective-function-formulations lag 
behind the performance shown by objective-
function-formulations of third case study in 
reducing the error in prediction of natural 
frequencies (99.4%) as well as MAC values 
(99.65%).  

Further, performance of any objective-function-
formulation should not be judged just by error 
reduction in response variables, but, error reduction 
in physical input variables should also be considered 
particularly when one is relying upon RS type 
approximation method. This is because in RSM an 
incorrect set of input variables can also sometimes 
produce a correct set of response variables. So error 
reduction in prediction of input physical parameters 
is also compared in Fig. 23 by using the data 
available in Table 10 for all three case studies and 
here also performance of objective-function-
formulations of third case study (average error of 
just 3.26%, along with an error reduction of 

97.98%) is far better than that of first (average error 
of 13.01%, along with an error reduction of 91.92%) 
or second case study (average error of 13.46%, 
along with an error reduction of just 91.65%).  
 

Table 8: Comparison of updated natural 
frequencies of three case studies. 
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 (H

z)
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l e
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휔  5.98 7.45 24.6 6.00 0.3 6.01 0.5 5.99 0.2 

휔  37.91 46.66 23.1 38.08 0.5 37.82 0.2 38.03 0.3 

휔  111.82 130.64 16.8 111.93 0.1 111.35 0.4 111.81 0.0 

휔  213.02 256.01 20.2 212.82 0.1 214.89 0.9 212.77 0.1 

휔  353.51 423.21 19.7 353.49 0.0 360.14 1.9 353.67 0.1 

Average error (%) 20.9  0.2  0.8  0.1 

Error reduction (%) 99.1  96.3  99.4 

 
Table 9: Comparison of updated MAC values of 

three case studies. 
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l e
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푀퐴퐶  1 0.9996 0.04 1.0000 0.00 1.0000 0.00 1.0000 0.00 

푀퐴퐶  1 0.9949 0.51 0.9997 0.03 0.9999 0.01 1.0000 0.00 

푀퐴퐶  1 0.9873 1.27 0.9996 0.04 0.9999 0.01 0.9999 0.01 

푀퐴퐶  1 0.9769 2.31 0.9983 0.17 0.9988 0.12 0.9999 0.01 

푀퐴퐶  1 0.9544 4.56 0.9980 0.20 0.9984 0.16 0.9999 0.01 

Average error (%) 1.74  0.09  0.06  0.01 

Error reduction (%) 94.94 96.55 99.65 
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Fig. 22 Comparison of response variables based 

FEMU results of three case studies. 
 
 

Table 10: Comparison of updated physical 
parameters of three case studies. 
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퐸  60 200 233.33 59.64 0.60 52.49 12.52 61.58 2.63 

퐸  80 200 150.00 74.84 6.45 113.08 41.35 79.92 0.10 

퐸  100 200 100.00 111.21 11.21 104.05 4.05 97.71 2.29 

퐸  60 200 233.33 81.82 36.37 70.59 17.65 57.60 4.00 

퐸  80 200 150.00 65.36 18.30 79.80 0.25 85.45 6.81 

퐸  100 200 100.00 94.86 5.14 95.06 4.94 96.30 3.70 
Average error 
(%) 161.11  13.01  13.46  3.26 

Error reduction (%)  91.92  91.65  97.98 

 
Thus it is found that performance of objective-

function-formulation of third case study is far better 
than that of first or second case study, thereby 
prompting its use as a benchmark objective-
function-formulation for further research work 
related to Derringer’s function based FEMU.  
Moreover RSM is an approximation based 
technique, hence, in order to further improve upon 
accuracy and reliability of updating results, more 

refined and reliable RS models need to be created 
and used for further model updating as explained in 
sub-section 5.5. 

 

 
Fig. 23 Comparison of physical variables based 

FEMU results of three case studies. 
 

 
5.5 Application of benchmark objective-
function-formulation in Refined RS models 
based FEMU  
During this stage, updating results of third case 
study are used to generate refined and more reliable 
RS models of different response variables. Here 
upper and lower limits of physical variables are set 
as ±10 GPa of corresponding optimum value 
obtained during third case study. ANOVA is 
performed for all ten responses (five natural 
frequencies and five MAC values). AVOVA results 
for first natural frequency (after backward 
elimination) have been presented in Table 11. 

ANOVA results indicate that RS model is 
significant (p-value < 0.0001). The value of R2 and 
adjusted R2 is 100%, which is also the best one can 
expect. This means that the refined RS model gives 
most accurate relationship between input variables 
and response variables. Moreover, the “Predicted 
R2” value is also 1.0000, which is in best agreement 
with “Adjusted R2” value of 1.0000. “PRESS” of 
0.00 shows that quadratic model fits in a perfect 
manner. A comparison of Table 4 with Table 11 
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shows that the refined RS based ANOVA results are 
far better than those obtained during the first stage. 
Fig. 24 shows the normal probability plot of 
residuals for RS predicted first natural frequency. 

 
Table 11: ANOVA for 흎ퟏ (after backward 

elimination). 

 
 In Fig. 24, the residuals are falling along a 
straight line, which shows that the residuals are 
normally distributed. Fig. 25 shows the values of the 
first natural frequency predicted by the refined RS 
model versus the values actually observed. Fig. 25 
proves that the regression model is fairly well fitted 

with the observed values. The polynomial equation 
for 휔 , in coded terms, is given in (19). Similar 
analysis is performed for remaining nine response 
variables also. By using benchmark objective-
function-formulation of third case study, ten 
individual desirability functions are defined by as 
per data given in Table 12 in conjunction with (18). 

 

 
Fig. 24 Normal probability plot of the residuals 

for 흎ퟏ. 
 

 
Fig. 25 Predicted versus actual values of 흎ퟏ. 

 
 휔 = 5.99 + 0.13퐴 + 0.05퐵 + 0.02퐶 +
																	0.03퐷 + 0.01퐸 + 0.0003퐹 +
																	0.003퐴퐵 + 0.001퐴퐶 + 0.002퐴퐷 +
																	0.001퐴퐸 + 0.001퐵퐶 + 0.001퐵퐷 +
																	0.0004퐶퐷 + 0.0003퐶퐸 − 0.02퐴 −
																	0.01퐵 − 0.002퐶 − 0.01퐷 −
																	0.001퐸 																																																(19) 
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Model 0.58 19 0.03 
222168.2

0 < 0.0001 

A 0.39 1 0.39 
2869935.

39 < 0.0001 

B 0.07 1 0.07 
527327.2

8 < 0.0001 

C 0.01 1 0.01 65128.65 < 0.0001 

D 0.02 1 0.02 
161714.4

2 < 0.0001 

E 0.00 1 0.00 4915.92 < 0.0001 

F 0.00 1 0.00 17.83 0.0010 

AB 0.00 1 0.00 1677.07 < 0.0001 

AC 0.00 1 0.00 255.28 < 0.0001 

AD 0.00 1 0.00 657.10 < 0.0001 

AE 0.00 1 0.00 34.80 < 0.0001 

BC 0.00 1 0.00 44.83 < 0.0001 

BD 0.00 1 0.00 90.66 < 0.0001 

CD 0.00 1 0.00 19.36 0.0007 

CE 0.00 1 0.00 10.09 0.0073 

A2 0.00 1 0.00 7190.63 < 0.0001 

B2 0.00 1 0.00 612.81 < 0.0001 

C2 0.00 1 0.00 102.19 < 0.0001 

D2 0.00 1 0.00 732.26 < 0.0001 

E2 0.00 1 0.00 10.60 0.0063 
Residua

l 0.00 13 0.00 
Cor 

Total 0.58 32 
Std. 

Dev. 0.00 R2 1.0000 

Mean 5.96 Adjusted R2 1.0000 

C.V. % 0.01 Predicted R2 1.0000 

PRESS 0.00 Adequate precision 
1600.37

13 
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Table 12: Details of objective-function-
formulation during refined RS based FEMU. 

Response  
variable Type of objective function Lower limit  Upper limit 

휔   Achieve target of 5.98 5.97 5.99 
휔  Achieve target of 37.91 37.87 37.95 
휔  Achieve target of 111.82 111.71 111.93 
휔  Achieve target of 213.02 212.81 213.23 
휔  Achieve target of 353.51 353.16 353.86 

푀퐴퐶  Maximize 0.999 1.000 

푀퐴퐶  Maximize 0.999 1.000 

푀퐴퐶  Maximize 0.999 1.000 

푀퐴퐶  Maximize 0.999 1.000 

푀퐴퐶  Maximize 0.999 1.000 

 

 
Fig. 26 Three-dimensional plot of overall 

desirability function for refined RS based FEMU. 
 
 

 
Fig. 27 Contour plot of overall desirability 

function for refined RS based FEMU. 
 

Overall desirability function, as drawn in Fig. 26, 
is developed by combining the ten individual 
desirability function as per (5). Contour plot of the 
overall desirability function is drawn in Fig. 
27.Optimum value of overall desirability function is 
found to be 0.996. Corresponding set of updating 
parameters (퐸 , 퐸 , 퐸 , 퐸 , 퐸  and 퐸 ) is found 
to be (60.21, 80.37, 99.59, 59.25, 80.74 and 99.70) 
GPa respectively. Updated values of physical 
parameters are then used to update the FE model of 
beam structure and later on to produce updated 
natural frequencies and MAC values as shown in 
Tables 13 to 15. Updated results show an error 
reduction of 99.99%, 100.00% and 99.62% in 
prediction of natural frequencies, MAC values and 
physical parameters respectively. Thus it is 
established that the benchmark objective-function-
formulation of third case study helps in almost 
completely removing the errors of FE model, 
thereby proving the success of the proposed 
objective-function-formulation.  
 
Table 13: Updated results of natural frequencies 

after refined RS based FEMU. 

Response  
variable 

SE results  
(Hz) 

FE results 
after refined 

RS based 
FEMU (Hz) 

Final error (%) 

휔  5.98 5.98 0.00 
휔  37.91 37.91 0.00 
휔  111.82 111.82 0.00 
휔  213.02 213.00 0.01 
휔  353.51 353.53 0.01 

Average error (%) 0.003 

Error reduction (%) 99.99 

 
 

Table 14: Updated results of MAC values after 
refined RS based FEMU. 

Response  
variable Desired value 

FE results 
after refined 

RS based 
FEMU 

Final error (%) 

푀퐴퐶  1.000 1.0000 0.00 

푀퐴퐶  1.000 1.0000 0.00 

푀퐴퐶  1.000 1.0000 0.00 

푀퐴퐶  1.000 1.0000 0.00 

푀퐴퐶  1.000 1.0000 0.00 

 Average error (%) 0.00 

 Error reduction (%) 100.00 
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Table 15: Updated results of physical input 
parameters after refined RS based FEMU. 

Physical 
parameter SE value (GPa) 

FE results 
after refined 

RS based 
FEMU (GPa) 

Final error  
(%) 

퐸  60 60.21 0.35 

퐸  80 80.37 0.46 

퐸  100 99.59 0.41 

퐸  60 59.25 1.25 

퐸  80 80.74 0.92 

퐸  100 99.70 0.30 

 Average error (%)  0.62 

 Error reduction (%) 99.62 

 
 
6 Conclusions 
This paper compares the performance of three 
different types of objective-function-formulations of 
Derringer’s function based FEMU method and finds 
out the best formulation that gives maximum error 
reduction in not only output (response) variables but 
also input (physical) parameters of FE model. It is 
established that best updating results are achieved 
when objectives are formulated by using a 
combination of natural frequencies and MAC values 
rather than just natural frequencies or just MAC 
values. In order to further improve the updating 
results, refined RS models based FEMU is also 
performed, wherein best results of earlier case 
studies are used as starting point. Refined RS 
models based FEMU helps in increasing accuracy 
and reliability of RS models and hence updating 
results also. Updating results show that by using the 
proposed objective-function-formulation, percentage 
error in prediction of response variables as well as 
physical parameters, is almost completely removed, 
thereby showing the success of the proposed 
benchmark objective-function-formulation.   
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